Электростанцией называется комплекс зданий, сооружений и оборудования, предназначенный для выработки электрической энергии. То есть, электростанции преобразуют различные виды энергий в электрическую. Наиболее распространенными типами электростанций являются:
Гидроэлектростанция (ГЭС)
Гидроэлектростанция (ГЭС) – это электростанция, преобразующая энергию движущейся воды в электрическую энергию. Устанавливаются ГЭС на реках. При помощи плотины создается перепад высот воды (до и после плотины). Возникающий напор воды приводит в движение лопасти турбины. Турбина приводит в действие генераторы, которые вырабатывают электроэнергию.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
В зависимости от мощности вырабатываемой электроэнергии, гидроэлектростанции подразделяются на: малые (до 5 МВт), средние (5-25 МВт) и мощные (свыше 25 МВт). По максимально используемому напору они делятся на: низконапорные (максимальный напор – от 3 до 25 м), средненапорные (25-60 м) и высоконапорные (свыше 60 м). Также ГЭС классифицируют по принципу использования природных ресурсов: плотинные, приплотинные, деривационные и гидроаккумулирующие.
выработка дешевой электроэнергии
использование возобновляемой энергии
быстрый выход на рабочий режим
ГЭС не загрязняют атмосферу
привязанность к водоемам
возможное затопление пахотных земель
пагубное влияние на экосистему рек
ГЭС можно строить только на равнинных реках (из-за сейсмической опасности гор)
Тепловая электростанция (ТЭС) вырабатывает электроэнергию за счет преобразования тепловой энергии, полученной в результате горения топлива. Топливом на ТЭС является: природный газ, уголь, мазут, торф или горячие сланцы.
В результате горения топлива в топках паровых котлов, происходит преобразование питательной воды в перегретый пар. Этот пар с определенной температурой и давлением по паропроводу подается в турбогенератор, где и происходит получение электрической энергии.
Тепловые электростанции подразделяются на
Котлотурбинные ТЭС, в свою очередь делятся на конденсационные (КЭС или ГРЭС) и теплоэлектроцентрали (ТЭЦ).
Преимущества теплоэлектростанций
малые финансовые затраты;
высокая скорость строительства;
возможность стабильной работы вне зависимости от сезона.
работа на невозобновляемых ресурсах;
медленный выход на рабочий режим
Недостатки ТЭС
Атомная электростанция (АЭС) – станция, в которой получение электроэнергии (или тепловой энергии) происходит за счет работы ядерного реактора. За 2015 год все АЭС мира выработали почти 11% электроэнергии.
Ядерный реактор при работе передает энергию теплоносителю первого контура. Этот теплоноситель поступает в парогенератор, где нагревает воду второго контура. В парогенераторе происходит преобразование воды в пар, который поступает в турбину и приводит в движение электрогенераторы. Пар после турбины поступает в конденсатор, где охлаждается водой из водохранилища. В качестве теплоносителя первого контура используется, в основном, вода. Однако, для этой цели можно использовать еще свинец, натрий и другие жидкометаллические теплоносители. Количество контуров АЭС может быть разным.
АЭС классифицируются по типу используемого реактора. В атомных электростанциях используются два вида реакторов: на тепловых и на быстрых нейтронах. Реакторы первого типа подразделяются на:
В зависимости от вида получаемой энергии, атомные электростанции бывают двух типов:
Преимущества атомных электростанций
Главный недостаток станций этого типа – тяжелые последствия в случае аварийных ситуаций.
Кроме перечисленных электростанций еще бывают:
В каждом развитом государстве существует собственная энергетика. Данная область включает в себя разные виды электростанций. Они могут использовать традиционные и нетрадиционные источники энергии. В первом случае – это природные ресурсы в виде угля, газа, продуктов переработки нефти, ядерное топливо и т.д. Второй вариант предполагает использование энергии природных явлений – солнца, ветра, приливов-отливов, подземных источников тепла. Независимо от формы использования, каждая электростанция требует много дополнительного оборудования для передачи потребителям полученной энергии.
Что такое электростанция
Любая электростанция представляет собой целый энергетический комплекс, включающий в себя различные установки, аппаратуру и оборудование, необходимые для получения, преобразования и транспортировки электроэнергии. Все эти компоненты размещаются в специальных зданиях и сооружениях, расположенных компактно на общей территории. Независимо от типа, они входят в состав Единой энергосистемы, созданной с целью эффективно использовать мощность электростанции, обеспечивая бесперебойное энергоснабжение потребителей. Принцип работы электростанций и их сопутствующих объектов основан на вращении вала генератора, который является основным элементом системы. Его основные функции заключаются в следующем:
Отличительными чертами каждого генератора являются формы и размеры, а также источник энергии, используемый для вращения вала. Кроме генератора, электростанция состоит из турбин и котлов, трансформаторов и распределительных устройств, средств коммутации, автоматики и релейной защиты.
В настоящее время получило развитие направления в области компактных установок. Они позволяют обеспечить энергией не только отдельные объекты, но и целые поселки, находящиеся на значительном удалении от стационарных линий электропередачи. В основном, это полярные станции и предприятия по добыче полезных ископаемых. Теперь рассмотрим какие типы установок используются в российской энергетике.
Основные типы электростанций
Все электрические станции таблица ниже классифицирует в первую очередь по источникам используемой энергии.
Среди них можно выделить следующие:
Каждая перечисленная электростанция представляет собой традиционные или альтернативные виды энергетики. В первом случае электричество вырабатывается на тепловых, гидро- и атомных установках. На ТЭС вырабатывается примерно 70-75% всей электроэнергии, поэтому они размещаются в местах с высоким энергопотреблением и большим количеством природных ресурсов.
ГЭС привязаны к полноводным рекам, протекающим в равнинной или горной местности. А ЭС строятся в местах с большим потреблением электроэнергии, при недостатке других видов энергоресурсов. Для того чтобы понять их роль и место в общей энергетической системе, следует рассмотреть более подробно типы электростанций, используемых в России.
Тепловые электрические станции – ТЭС
На тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы.
Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла.
Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе.
Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.
Преимущества и недостатки гидроэлектростанций
По своей значимости, ГЭС находятся на втором месте после тепловых электростанций. В своей работе они используют энергию воды, преобразующейся в электрический ток, и относящейся к возобновляемым ресурсам. Простое управление такими станциями не требует большого количества персонала. Коэффициент полезного действия доходит до 85%.
Электричество, производимое на ГЭС считается самым дешевым, его цена примерно в 5-6 раз меньше, чем на тепловых электроустановках. Гидроэлектростанции отличаются высокой маневренностью и могут быть запущены в работу в течение 3-5 минут, тогда как на ТЭС для этого требуется несколько часов. Это качество особенно важно при перекрытии пиковых нагрузок в суточном графике электроснабжения.
Основными недостатками подобных сооружений являются:
На российских реках сооружаются целые каскады гидроэлектростанций. Наиболее крупными считаются Ангаро-Енисейский каскад, включающий Братскую, Красноярскую, Саяно-Шушенскую, Усть-Илимскую ГЭС, а также Волжский каскад с Рыбинской, Угличской, Иваньковской, Саратовской, Волжской и другими ГЭС.
Достаточно перспективным направлением считается гидроаккумулирующая электростанция – ГАЭС. В основе их работы заложен принцип действия, связанный с цикличным перемещением одинакового объема воды между верхним и нижним бассейнами. Ночью за счет излишков электроэнергии вода подается снизу-вверх, а в дневное время при резком росте энергопотребления она сбрасывается вниз и вращает турбины, производя электричество. Эти станции совершенно не зависят от естественных колебаний речного стока, а под водохранилища требуется гораздо меньше затапливаемых площадей.
Атомные электростанции
На третьем месте по количеству производимой электроэнергии находятся атомные электростанции. В России их доля в энергетике составляет чуть выше 10%. В США этот показатель равен 20%, в Германии – более 30%, во Франции – свыше 75%. Сокращение программ в области атомной энергетики произошло вследствие аварии на Чернобыльской АЭС.
Рассматривая виды электростанций в России, следует отметить, что наиболее известными АЭС считаются Ленинградская, Курская, Смоленская, Нововоронежская, Белоярская и другие. Новым направлением является создание АТЭЦ – атомных теплоэлектроцентралей, вырабатывающих электрическую и тепловую энергию. Подобный объект построен на Чукотке в поселке Билибино. Еще одно направление – строительство АСТ – атомных станций теплоснабжения, предназначенных для производства тепла. Такие установки успешно функционируют в Нижнем Новгороде и Воронеже.
Основные плюсы АЭС заключаются в следующем:
Рассматривая вопрос как работает АЭС, нужно в первую очередь остановиться на тяжелых последствиях в случае аварий. Кроме того, серьезные проблемы возникают с радиоактивными отходами в процессе их захоронения. Водоемы, используемые для технических целей АЭС, подвержены тепловому загрязнению.
Дизельные электростанции
Для работы дизельных электростанций, которые называют ДЭС, используются различные виды жидкого топлива. Основой системы является дизель-генератор, включающий в себя дизельный двигатель, электрический генератор, системы смазки и охлаждения, пульт управления.
Данные установки применяются как альтернативные в отдаленных районах, где являются основными источниками электроэнергии. Как правило, подведение стационарных ЛЭП в такие места экономически не выгодно. Кроме того, дизельные электростанции служат аварийными или резервными источниками питания, когда потребители не должны отключаться от электроснабжения.
Виды дизельных электростанций могут быть стационарными (4-5 тысяч кВт) и мобильными (12-1000 кВт). Благодаря небольшим размерам, они могут размещаться в небольших зданиях и помещениях. Эти станции постоянно готовы к пуску, а сам процесс запуска не занимает много времени. Большинство функций установок автоматизировано, а остальные легко переводятся в автоматический режим. Основным недостатком дизельных станций является привозное горючее и все мероприятия, связанные с его доставкой и хранением.
Нетрадиционные источники представлены геотермальными электростанциями (рис. 1), работающими на тепловой энергии, поступающей из земных недр. Чем глубже от поверхности земли, тем выше температура данного слоя. В России такие установки построены на Камчатке и на Курильских островах.
Существуют конструкции приливных электростанций (рис. 2), которые функционируют от энергии, создаваемой приливами и отливами в самом узком месте искусственного залива, отсеченного от моря. В качестве примера можно привести опытную Кислогубскую ПЭС, возведенную на Кольском полуострове.
Классификация электростанций включает в себя солнечные и ветровые альтернативные установки (рис. 3). Все виды таких систем обеспечивают электроэнергией небольшие предприятия и производства, используются в частном секторе для удовлетворения бытовых потребностей. В основном, это районы и места, где отсутствует централизованное электроснабжение и нет возможности подключиться к обычным ЛЭП.
https://youtube.com/watch?v=ctoXEfAx-fQ%3Ffeature%3Doembed
Для преобразования энергии солнечной радиации, или иными словами – солнечного тепла и света, в электрическую энергию, уже многие годы во многих странах мира используют солнечные электростанции. Это инженерные сооружения различных конструкций, работающие на различных принципах, в зависимости от типа электростанции. Если кто-то, слыша сочетание «солнечная электростанция», представляет себе устланную солнечными панелями обширную площадь, то в этом нет ничего удивительного, ибо данный тип электростанций, называемых фотоэлектрическими, очень популярен сегодня во многих домашних хозяйствах. Но это — не единственный тип солнечных электростанций. Все известные сегодня солнечные электростанции, генерирующие электричество в промышленных масштабах, подразделяются на шесть типов: башенные, тарельчатые, фотоэлектрические, параболоцилиндрические концентраторные, солнечно-вакуумные и комбинированные. Рассмотрим же подробно каждый тип солнечных электростанций, и обратим внимание на конкретные сооружения в разных странах мира. В основе башенных электростанций изначально лежал принцип испарения воды под действием солнечного излучения. Водяной пар здесь используется в качестве рабочего тела. Расположенная в центре такой станции башня, имеет на вершине резервуар с водой, который окрашен в черный цвет для наилучшего поглощения как видимого излучения, так и тепла. Кроме этого в башне имеется насосная группа, функция которой — доставлять воду в резервуар. Пар, температура которого превышает 500 °C, вращает турбогенератор, расположенный на территории станции. Для того, чтобы максимально возможное количество солнечной радиации сконцентрировать на вершине башни, вокруг нее устанавливают сотни гелиостатов, функция которых — направлять отраженное солнечное излучение точно на емкость с водой. Гелиостаты представляют собой зеркала, площадь каждого из которых может достигать десятков квадратных метров. Закрепленные на опорах, оснащенных автоматической системой фокусировки, все гелиостаты направляют отраженное солнечное излучение точно на вершину башни, на резервуар, поскольку позиционирование работает в соответствии с движением солнца в течение дня. В самый жаркий день температура получаемого пара может доходить до 700 °C, и этого более чем достаточно для нормальной работы турбины. Так, например, в Израиле, на территории пустыни Негев, ко концу 2017 года завершится возведение башенной электростанции мощностью более 121 МВт. Высота башни составит 240 метров (самая высокая в мире солнечная башня на момент строительства), а вокруг нее будет расположено пол сотни тысяч гелиостатов, позиционироваться которые будут посредством управления через Wi-Fi. Температура пара в резервуаре будет достигать 540 °C. Проект стоимостью 773 миллиона долларов покроет 1% потребностей Израиля в электроэнергии. Вода — не единственное, что может нагреваться солнечным излучением в башне. Например, в Испании в 2011 году ввели в эксплуатацию солнечную электростанцию башенного типа Gemasolar, в которой нагревается жидкий теплоноситель на основе соли. Это решение позволило сохранять тепло даже в ночное время. Разогретая до 565 °С соль поступает в специальный резервуар, затем передает тепло парогенератору, который вращает турбину. Вся система обладает номинальной мощностью 19,9 МВт, и способна подать 110 ГВт-ч электрической энергии (в среднем за год) для питания сети из 27500 домовладений, круглосуточно работая в полную силу в течение 9 месяцев. Принципиально электростанции данного типа похожи на башенные, однако конструктивно отличаются. Здесь используются отдельные модули, каждый из которых генерирует электричество. Модуль включает в себя и отражатель, и приемник. На опоре устанавливается параболическая сборка из зеркал, формирующих отражатель. В фокусе параболоида расположен приемник. Отражатель состоит из десятков зеркал, каждое из которых индивидуально настроено. Приемником же может быть двигатель Стирлинга, совмещенный с генератором, либо резервуар с водой, которая превращается в пар, а пар вращает турбину. Так например, в 2015 году компания Ripasso, Швеция, испытала в Южной Африке параболическую гелеотермальную установку с двигателем Стирлинга в фокусе. Отражатель установки представлял собой параболическое зеркало, состоящее из 96 частей, и общей площадью 104 квадратных метра. В фокусе располагался водородный двигатель Стирлинга, оснащенный маховиком, и сопряженный с генератором. Тарелка медленно поворачивалась вслед за солнцем в течение дня. В результате КПД получился 34%, и каждая такая «тарелка» оказалась способной давать потребителю 85 МВт-ч электроэнергии в год. Справедливости ради отметим, что в фокусе «тарелки» солнечной электростанции данного типа может располагаться и емкость с маслом, тепло от которого может передаваться парогенератору, который, в свою очередь, вращает турбину электрогенератора. Параболоцилиндрические концентраторные солнечные электростанции Здесь снова теплоноситель нагревается сконцентрированным отраженным излучением. Зеркало в форме параболического цилиндра, до 50 метров в длину, располагается в направлении север-юг, и вслед за движением солнца вращается. В фокусе зеркала закреплена трубка, по которой движется жидкий теплоноситель. После того, как теплоноситель достаточно разогрелся, в теплообменнике тепло передается воде, где пар опять же вращает генератор. В 80-е годы в Калифорнии, компания Luz International построила 9 таких электростанций, их общая мощность составила 354 МВт. Однако, после нескольких лет практики, специалисты пришли к заключению, что на сегодняшний день параболоцилиндрические электростанции уступают как по рентабельности, так и по эффективности солнечным электростанциям башенного и тарельчатого типов. Несмотря на это, в 2016 году в пустыне Сахара, неподалеку от Касабланки, была открыта электростанция на солнечных концентраторах, мощностью 500 МВт. Полмиллиона 12 метровых зеркал разогревают теплоноситель до 393°С, чтобы превратить воду в пар для вращения генераторных турбин. Ночью тепловая энергия продолжает работать, будучи сохраненной в расплавленной соли. Таким путем государство Морокко планирует постепенно решать проблему экологически чистого электроснабжения. Станции на базе фотоэлектрических модулей, солнечных батарей. Весьма популярны и распространены в современном мире. Модули на базе кремниевых элементов широко применяют для электроснабжения небольших объектов, таких как санатории, частные коттеджи и другие здания, где из отдельных частей набирают станцию необходимой мощности, и устанавливают ее на крыше или на участке земли подходящей площади. Промышленные же фотоэлектрические станции способны обеспечить электроснабжение небольших городов. Например в России, в 2015 году была запущена самая крупная фотоэлектрическая электростанция в стране. Солнечная электростанция имени Александра Влазнева, состоящая из 100000 солнечных панелей, общей мощностью 25 МВт, расположилась на площади в 80 гектаров между городами Орском и Гаем. Мощности станции достаточно, чтобы снабдить электроэнергией пол города Орска, включая предприятия и жилые дома. Принцип действия таких станций прост. Энергия фотонов света преобразуется в ток в кремниевой пластине, внутренний фотоэффект в этом полупроводнике давно изучен и взят на вооружение производителями солнечных батарей. Но кристаллический кремний, дающий КПД 24% – не единственный вариант. Технология непрерывно совершенствуется. Так, еще в 2013 году инженеры компании Sharp добились от индиево-галлий-арсенидного элемента КПД 44,4%, а применение фокусирующих линз позволяет добиться всех 46%. Абсолютно экологически безопасный тип солнечных станций. В качестве принципа используется естественный поток воздуха, возникающий благодаря перепаду температур (воздух у поверхности земли разогревается, и устремляется вверх). Еще в 1929 году во Франции была запатентована эта идея. Сооружается оранжерея, представляющая собой накрытый стеклом участок земли. Из центра оранжереи выступает башня, высокая труба, в которой установлена турбина генератора. Солнце разогревает оранжерею, и воздух устремляясь через трубу вверх, вращает турбину. Тяга сохраняется постоянной, пока солнце разогревает воздух в закрытом стеклом объеме, и даже ночью, пока поверхность земли сохраняет тепло. В 1982 году, в 150 километрах к югу от Мадрида, в Испании, была построена экспериментальная станция такого типа. Парник имел диаметр 244 метра, а труба была 195 метров в высоту. Максимально развитая мощность получилась всего 50 кВт. Несмотря на это турбина работала в течение 8 лет, пока не вышла из строя из-за ржавчины и штормовых ветров. В 2010 году в Китае завершили строительство солнечно-вакуумной станции, которая смогла дать 200 кВт. Она заняла площадь 277 гектаров. Комбинированные солнечные электростанции Это те станции, где к теплообменникам подключают коммуникации горячего водоснабжения, отопления, в общем нагревают воду для различных нужд. К комбинированным станциям относятся и совмещенные решения, когда параллельно солнечным батареям работают концентраторы. Часто комбинированные солнечные электростанции оказываются единственным решением для альтернативного электроснабжения и отопления частных домов.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Электростанция – это промышленный объект, который вырабатывает электроэнергию из первичной энергии. Большинство электростанций используют один или несколько генераторов, которые преобразуют механическую энергию в электрическую, чтобы подавать электроэнергию в электрическую сеть для нужд общества. Исключение составляют солнечные электростанции, которые используют фотоэлектрические элементы (вместо турбины) для выработки этого электричества.
Тип первичного топлива или потока первичной энергии, который обеспечивает электростанцию ее первичной энергией, различается. Наиболее распространенными видами топлива являются уголь, природный газ и уран (атомная энергия). Основным потоком первичной энергии для производства электроэнергии является гидроэлектроэнергия (вода). Другие потоки, которые используются для выработки электроэнергии, включают ветер, солнце, геотермальную энергию и приливы.
Различные типы электростанций для производства энергии:
Используя реакцию ядерного деления и уран в качестве топлива, атомные электростанции вырабатывают большое количество электроэнергии.
Поскольку атомные электростанции считаются низкоуглеродным источником энергии, эта технология считается более экологически чистой.
По сравнению с возобновляемыми источниками энергии, такими как солнечная энергия и ветер, производство электроэнергии на атомных электростанциях также считается более надежным.
Хотя инвестиции, необходимые для ввода атомной электростанции в эксплуатацию, значительны, затраты, связанные с их эксплуатацией, относительно низки.
Источники ядерной энергии также имеют более высокую плотность, чем ископаемое топливо, и выделяют большое количество энергии.
Из-за этого атомным электростанциям требуется небольшое количество топлива, но они производят огромное количество энергии, что делает их особенно эффективными, когда они запущены и запущены.
Гидроэлектростанции
Гидроэлектроэнергия производится путем использования силы гравитации текущей воды.
По сравнению с электростанциями, работающими на ископаемом топливе, гидроэлектростанции выбрасывают меньше парниковых газов. Но строительство гидроэлектростанций и плотин требует огромных капиталовложений.
Угольные электростанции
По данным Всемирной угольной ассоциации, в 2018 году на угольные электростанции приходилось около 37% мировой электроэнергии.
Угольные электростанции используют энергетический уголь в качестве источника для выработки электроэнергии и, следовательно, выбрасывают в атмосферу значительное количество вредных газов.
Стремясь сократить выбросы парниковых газов, многие развитые страны уже объявили о планах поэтапного отказа от угольных электростанций.
Используя дизельное топливо в качестве топлива, этот тип электростанции используется для мелкосерийного производства электроэнергии.
Они устанавливаются в местах, где нет легкодоступных альтернативных источников питания, и в основном используются в качестве резервного источника бесперебойного питания при перебоях.
Для установки дизельных электростанций требуется лишь небольшая площадь, и они обеспечивают более высокую тепловую эффективность по сравнению с угольными электростанциями.
Из-за высоких затрат на техническое обслуживание и цен на дизельное топливо электростанции не завоевали такой популярности, как другие типы электростанций, такие как паровые и гидроэлектростанции.
Геотермальные электростанции
Три основных типа геотермальных электростанций включают электростанции с сухим паром, электростанции с мгновенным паром и электростанции с бинарным циклом, все из которых используют паровые турбины для производства электроэнергии.
Установленная мощность геотермальной энергии постепенно увеличивалась во всем мире за последнее десятилетие: с 10 ГВт в 2010 году до почти 14 ГВт в 2019 году.
Геотермальные электростанции считаются экологически чистыми и выделяют меньше вредных газов по сравнению с угольными электростанциями.
Газовые электростанции
Газовая электростанция сжигает природный газ — быстрорастущий источник энергии во всем мире — для выработки электроэнергии.
Еще одним типом установок, использующих газ, являются электростанции с комбинированным циклом. Используя как газовые, так и паровые турбины, они производят большее количество электроэнергии из одного источника топлива по сравнению с традиционной электростанцией.
Они улавливают тепло от газовой турбины для увеличения производства электроэнергии, а также выделяют небольшое количество вредных газов в атмосферу.
Солнечные электростанции
Солнечные электростанции преобразуют энергию солнца в тепловую или электрическую энергию, используя один из самых чистых и распространенных возобновляемых источников энергии.
Как правило, они не требуют особого ухода и служат от 20 до 25 лет.
Но первоначальные затраты на финансирование солнечных электростанций высоки, а установка требует много места.
Другая подобная технология — солнечно-термальная. Это система гигантских зеркал, размещенных таким образом, чтобы концентрировать солнечные лучи на очень небольшой площади для создания значительного количества тепла, которое затем производит пар для питания турбины, вырабатывающей электричество.
Ветряные электростанции
В последние годы во всем мире наблюдается быстрый рост числа ветряных электростанций, чему способствует технологический прогресс.
После того, как ветряные турбины построены, эксплуатационные расходы, связанные с обслуживанием ветряных электростанций, низки, и они обычно считаются относительно рентабельными.
Ветряные электростанции также могут быть построены на сельскохозяйственных угодьях, не прерывая сельскохозяйственных работ.
Но техническое обслуживание ветряных турбин может различаться, поскольку некоторые из них необходимо часто проверять, а ветроэнергетические проекты обычно требуют огромных капиталовложений.
Приливные Электростанции
Энергия приливов генерируется путем преобразования энергии приливов в энергию, и ее производство считается более предсказуемым по сравнению с энергией ветра и солнечной энергией.
Но приливная энергия до сих пор широко не используется, хотя первая в мире крупномасштабная электростанция такого типа была введена в эксплуатацию в 1966 году.
Ожидается, что повышенное внимание к производству энергии из возобновляемых источников ускорит разработку новых методов использования энергии приливов.
Хотя развитие приливной энергетики находится на начальной стадии, в ближайшие годы она может значительно вырасти.
Системы электроснабжения сооружаются для обеспечения электроприемников электроэнергией в необходимом количестве и требуемого качества.
Электроприемник (ЭП), как составляющая часть электрического хозяйства предприятия, организации, любого электрифицированного рбъекта представляет собой аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой фид энергии, например, электродвигатель, электрический источник света, нагревательный элемент.
Электроэнергия используется для привода различных механизмов, искусственного освещения, электротсхнологии, для специальных целей измерения, учетадконтроля, автоматики и защиты, а также для биологических и медицинских целей.
Электроприемник или группу электроприемников, объединенных технологическим процессом и размещенных на определенной территории, например, станок, цех, предприятие, называют потребителем электрической энергии.
Классификация промышленных электропотребителей
Промышленные предприятия могут быть классифицированы по следующим основным признакам:
Большая часть промышленных предприятий размещается в городах.
Являясь основными потребителями электроэнергии, города в зависимости от численности населения, подразделяются на: крупнейшие— более 500 тыс. чел; крупные— 250—5 00 тыс.; большие — 100—250 тыс.; средние— 50—100 тыс.; малые — до 50 тыс. чел.
В свою очередь территория города по назначению подразделяется на следующие зоны: ‘промышленную — для размещения производственных предприятий; коммунально-складскую — для размещения транспортных предприятий (автобаз, троллейбусных и трамвайных парков); внешнего транспорта — для размещения транспортных сооружений, вокзалов, портов, станций; селитебную — для размещения жилых районов, общественных зданий и сооружений, мест отдыха населения.
Основу застройки городов составляют гражданские здания, представляющие собой объекты непроизводственной сферы народного хозяйства: жилые дома, общежития, гостиницы, предприятия торговли и общественного питания, школы и дошкольные учреждения, предприятия бытового обслуживания и коммунального хозяйства и др.
Расположение потребителей (электроприемников) на генплане (плане) предприятия или города, величина и характер их электрических нагрузок, характеристика электроприемников с точки зрения надежности обеспечения их электроэнергией являются основными исходными данными, определяющими выбор соответствующей системы электроснабжения.
Основные определения электрической сети
Под системой электроснабжения понимается совокупность электроустановок, предназначенных для обеспечения потребителей электрической энергией.
Электроустановками называется совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, передачи, распределения электрической энергии и преобразования ее в другой вид энергии. Система электроснабжения является подсистемой электроэнергетической системы и одновременно составной частью электрического хозяйства предприятия, организации.
Электроэнергетическая (электрическая) система — это электрическая часть энергосистемы и питающиеся от нее приемники электрической энергии.
Под энергетической системой понимается совокупность электростанций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической и тепловой энергии и теплоты при общем управлении этим режимом.
Электрическая станция — это установка или группа установок для производства электроэнергии или электрической и тепловой энергии.
Электрической сетью называется совокупность электроустановок для передачи и распределения электроэнергии, состоящая из подстанций, линий электропередачи, токопроводов, аппаратуры присоединения, защиты и управления.
Подстанция — это электроустановка для приема, преобразования и распределения электроэнергии.
Под линией электропередачи понимается устройство, предназначенное для передачи и распределения или только для передачи электроэнергии на расстояние.
Электрическим хозяйством предприятия называется совокупность электроустановок, электрических и неэлектрических изделий, не являющихся частью электрической сети, но обеспечивающих ее функционирование; помещений, зданий и сооружений, которые эксплуатируются электротехническим или подчиненным ему персоналом; людских, материальных и энергетических ресурсов и информационного обеспечения, необходимых для жизнедеятельности электрического хозяйства.
Принципы работы системы электроснабжения
Работа всей системы электроснабжения регламентирована в основном режимами потребления электроэнергии, ее техническим и ремонтным обслуживанием.
По способу использования системы электроснабжения относятся к непрерывно работающим. Это сложные динамичные системы, характеризующиеся многообразием внешних и внутренних связей.
Режимы производства, передачи и распределения электроэнергии в системах электроснабжения неразрывно связаны с режимами питающих энергосистем. Потребители задают режим нагрузок и формируют график нагрузки питающей энергосистемы. Энергосистема оказывает влияние на систему электроснабжения изменением располагаемой мощности источников питания, уровнями напряжения и частоты, величинами токов короткого замыкания, требованиями устойчивости и надежности.
Техническое и ремонтное обслуживание систем электроснабжения представляет комплекс работ, направленных на поддержание исправности или работоспособности оборудования и линий электропередачи. Оно в значительной степени определяет уровень эксплуатационной надежности электроснабжения.
Современный уровень развития систем электроснабжения предполагает необходимость объективных законов формирования питающих энергосистем и электрического хозяйства предприятий.