ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Полный курс подготовки к ЕГЭ по химии-2024. Здесь приведена теория по каждому заданию в соответствии с спецификацией и кодификатором ЕГЭ по химии. Учебные материалы и теория, необходимые для подготовки к ЕГЭ по химии.

Органическая химия – это химия углерода и его соединений с другими элементами.

В молекулах органических веществ могут присутствовать также атомы: водорода Н, кислорода О, азота N, серы S, фосфора P, галогенов, металлов и других элементов.

Количество известных органических соединений в настоящее время превышает 20 миллионов.

– это вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов – разное строение.

– это явление существования веществ с одинаковым составом, но различным строением.

Например, формуле C4H10 соответствуют два изомерных соединения н-бутан с линейным углеродным скелетом и изобутан (2-метилбутан) с разветвленным скелетом:

При этом температура кипения н-бутана –0,5оС, а изобутана –11,4оС.

В sp-гибридизацию вступают одна s-орбиталь и одна p-орбиталь. Две p-орбитали не  вступают в гибридизацию:

Две sp-гибридные орбитали атома углерода направлены в пространстве под углом 180о друг к другу, что соответствует линейному строению.


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Изображение с портала orgchem.ru

При этом две р-орбитали располагаются перпендикулярно друг другу и перпендикулярно линии, на которой расположены гибридные орбитали.

Например, молекула ацетилена имеет линейное строение.

Углеводороды– это вещества, состав которых отражается формулой СхНу, то есть в их составе только атомы углерода и водорода.

В зависимости от типа связей между атомами С, они делятся на предельные или насыщенные (все связи одинарные) и непредельные (ненасыщенные)  — в молекуле присутствуют двойные и тройные связи.

Кроме того, углеводороды делятся на циклические (углеродная цепь образует кольцо) и ациклические или алифатические (углеродная цепь не замкнута в кольцо).

Здравствуйте! Меня зовут Степанов Виктор Николаевич. Я — профессиональный репетитор по химии, физике и математике. Подготовлю вас к ЕГЭ, ОГЭ, ДВИ и олимпиадам онлайн.  Более подробная информация — в разделе Обо мне. Информация о занятиях — в соответствующем разделе. На сайте представлены справочные и учебные материалы по разным предметам, статьи по химии  (ЕГЭ по химии, ОГЭ по химии, олимпиады по химии в Москве и регионах).

Занятия проходят онлайн в небольших группах (до 4-5 человек) индивидуально с каждым учеником. Стоимость — от 2700 руб/занятие.

Также со мной можно заниматься в формате вебинарного онлайн-курса (ЕГЭ по химии), стоимость 20490 руб до 1 октября.

В sp2-гибридизацию вступают одна s-орбиталь и две p-орбитали. Одна p-орбиталь не гибридизуется:


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Три sp2-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому три sp2-гибридные орбитали атома углерода направлены в пространстве под углом 120о друг к другу, что соответствует плоскому строению (треугольник).

При этом негибридная р-орбиталь располагается перпендикулярно плоскости, в которой расположены три гибридные sp2— орбитали.


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Например, молекула этилена C2H4 имеет плоское строение. Сигма-связь между атомами углерода образуется за счет перекрывания sp2-гибридных орбиталей. Пи-связь между атомами углерода образуется за счет перекрывания негибридных р-орбиталей.


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Модель молекулы этилена:

В sp3-гибридизацию вступают одна s-орбиталь и три p-орбитали. При этом образуются четыре sp3-гибридные орбитали:

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в состоянии sp3-гибридизации направлены в пространстве под углом 109о 28’  друг к другу, что соответствует тетраэдрическому строению.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода. Валентный угол Н–С–Н в метане равен 109о 28’

Молекулам линейных алканов с большим числом атомов углерода соответствует зигзагообразное расположение атомов углерода.

Например, пространственное строение н-бутана

Основные положения теории строения органических соединений

Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям.  Последовательность межатомных связей в молекуле называется ее химическим строением и отражается структурной формулой (формулой строения).

Это приводит к тому, что вещества одного и того же состава могут иметь разное строение, т. е. к появлению изомерии.

Изомеры – это вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов – разное строение.

При этом температура кипения н-бутана -0,5оС, а изобутана -11,4оС.

Мы знаем в чем причина низких баллов в 2023 году. М Ы ЗНАЕМ КАК ИСПРАВИТЬ ЭТО В 2024 ГОДУ

Подготовка к ЕГЭ/ОГЭ от Университета «Синергия»

Собрал необходимые материалы по всем предметам и уже разделили их по блокам, вопросам, вариантам и типам заданий на экзамене. В разделах есть официальная информация к изучению — кодификатор, спецификация ФИПИ, демоверсии, КИМ (пробные варианты) и многое другое.

Для удобства информация распределена по номерам заданий демоверсий 2024 года. Материал изложен полно, но кратко. Простым языком. Есть наглядные примеры для понимания, схемы, таблицы для запоминания.

Это удобное пособие для быстрой подготовки к экзаменам: просто выбирайте задание, которое вызвало больше всего затруднений или вопросов, и тренируйтесь. В каждом листе есть список заданий, которые вы можете пройти самостоятельно, также правильные ответы с пояснениями (обоснованиями).

Подготовка к ЕГЭ/ОГЭ по биологии и химии

Эксперт ЕГЭ по биологии

За 20 лет преподавания на биофаке МГУ ни одного провала — мои ученики пополнили ряды МГУ имени М. В. Ломоносова (биофак, психфак, медфак), I-II-III Медицинские институты, РУДН и даже далекий китайский Шенчжень! Использую оригинальные курсы и авторские методики преподавания: деловые игры, круглые столы, конференции для школьников и студентов, дополнительные курсы и кружки, научно-исследовательские и проектные работы.

В «Синергии» отвечает за:

Различают два основных вида изомерии: структурную и пространственную (стереоизомерию)

Структурные изомеры отличаются друг от друга взаимным расположением атомов в молекуле;  стереоизомеры — расположением атомов в пространстве.

– соединения с одинаковым составом, но различным порядком связывания атомов, т.е. с различным химическим строением. Молекулярная формула у структурных изомеров одинаковая, а структурная различается.

1. Изомерия углеродного скелета: вещества различаются строением углеродной цепи, которая может быть линейная или разветвленная.

Например, молекулярной формуле С5Н12 соответствуют три изомера:


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

обусловлена различным положением кратной связи, функциональной группы или заместителя при одинаковом углеродном скелете молекул.

2.1. Изомерия положения функциональной группы. Например, существует два изомерных предельных спирта с общей формулой С3Н8О: пропанол-1 (н-пропиловый спирт) пропанол-2 (изопропиловый спирт):


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

2.2. Изомерия положения кратной связи может быть вызвана различным положением кратной (двойной или тройной)  связи в непредельных соединениях. Например, в бутене-1 и бутене-2:


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

2.3. Межклассовая изомерия – ещё один вид структурной изомерии, когда вещества из разных классов веществ имеют одинаковую общую формулу.

Например, формуле С2Н6О соответствуют: спирт (этанол) и простой эфир (диметиловый эфир):


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

– это вещества с одинаковым составом и химическим строением, но с разным пространственным расположением атомов в молекуле. Виды пространственной изомерии – геометрическая (цис—транс) и оптическая изомерия.

Геометрическая изомерия (или цис-транс-изомерия)

Геометрическая изомерия характерна для соединений, в которых различается положение заместителей относительно плоскости двойной связи или цикла.

Например, для алкенов и циклоалканов.

Двойная связь не имеет свободного вращения вокруг своей оси.

Поэтому заместители у атомов углерода при двойной связи могут быть расположены либо по одну сторону от плоскости двойной связи (цис-изомер), либо по разные стороны от плоскости двойной связи (транс-изомер). При этом никаким вращением нельзя получить из цис-изомера транс-изомер, и наоборот.

Например, бутен-2 существует в виде цис— и транс-изомеров


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

1,2-Диметилпропан также образует цис-транс-изомеры:


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Геометрические изомеры различаются по физическим свойствам (температура кипения и плавления, растворимость, дипольный момент и др.). Например, температура кипения цис-бутена-2 составляет 3,73 оС, а транс-бутена-2 0,88оС.

При этом цис—транс-изомерия характерна для соединений, в которых каждый атом углерода при двойной связи С=С (или в цикле) имеет два различных заместителя.

Например, в молекуле бутена-1 CH2=CH-CH2-CH3 заместители у первого атома углерода при двойной связи (два атома водорода) одинаковые, и цис—транс-изомеры бутен-1 не образует. А вот в молекуле бутена-2 CH3—CH=CH-CH3 заместители у каждого атома углерода при двойной связи разные (атом водорода и метильная группа CH3), поэтому бутен-2 образует цис— и транс-изомеры.

Таким образом, для соединений вида СH2=СHR и СR2=СHR’ цис—транс-изомерия не характерна.

Оптическая изомерия

– это пространственные изомеры, молекулы которых соотносятся между собой как предмет и несовместимое с ним зеркальное изображение.

Оптическая изомерия свойственна молекулам веществ, имеющих асимметрический атом углерода.

Асимметрический атом углерода — это атом углерода, связанный с четырьмя различными заместителями.

Такие молекулы обладают оптической активностью — способностью к вращению плоскости поляризации света при прохождении поляризованного луча через раствор вещества.

Например, оптические изомеры образует 3-метилгексан:

Понятие атом возникло еще в античном мире для обо значения частиц вещества. В переводе с греческого атом означает «неделимый».

Электроны

Ирландский физик Стони на основании опытов пришел к выводу, что электричество переносится мельчайшими частицами, существующими в атомах всех химических элементов. В $1891$ г. Стони предложил эти частицы назвать электронами, что по-гречески означает «янтарь».

Через несколько лет после того, как электрон получил свое название, английский физик Джозеф Томсон и французский физик Жан Перрен доказали, что электроны несут на себе отрицательный заряд. Это наименьший отрицательный заряд, который в химии принят за единицу $(–1)$. Томсон даже сумел определить скорость движения электрона (она равна скорости света — $300 000$ км/с) и массу электрона (она в $1836$ раз меньше массы атома водорода).

Томсон и Перрен соединяли полюса источника тока с двумя металлическими пластинами — катодом и анодом, впаянными в стеклянную трубку, из которой был откачан воздух. При подаче на пластины-электроды напряжения около 10 тысяч вольт в трубке вспыхивал светящийся разряд, а от катода (отрицательного полюса) к аноду (положительному полюсу) летели частицы, которые ученые сначала назвали катодными лучами, а затем выяснили, что это был поток электронов. Электроны, ударяясь об особые вещества, нанесенные, например, на экран телевизора, вызывают свечение.

Был сделан вывод: электроны вырываются из атомов материала, из которого сделан катод.

Свободные электроны или поток их можно получить и другими способами, например, при накаливании металлической проволоки или при падении света на металлы, образованные элементами главной подгруппы I группы таблицы Менделеева (например, цезий).


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Состояние электронов в атоме

Под состоянием электрона в атоме понимают совокупность информации об энергии определенного электрона в пространстве, в котором он находится. Мы уже знаем, что электрон в атоме не имеет траектории движения, т.е. можно говорить лишь о вероятности нахождения его в пространстве вокруг ядра. Он может находиться в любой части этого пространства, окружающего ядро, и совокупность различных положений его рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно представить себе так: если бы удалось через сотые или миллионные доли секунды сфотографировать положение электрона в атоме, как при фотофинише, то электрон на таких фотографиях был бы представлен в виде точки. При наложении бесчисленного множества таких фотографий получилась бы картина электронного облака с наибольшей плотностью там, где этих точек больше всего.

На рисунке показан «разрез» такой электронной плотности в атоме водорода, проходящей через ядро, а штриховой линией ограничена сфера, внутри которой вероятность обнаружения электрона составляет $90%$. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона — $10%$, вероятность обнаружения электрона внутри второго от ядра контура составляет $20%$, внутри третьего — $≈30%$ и т.д. В состоянии электрона есть некая неопределенность. Чтобы охарактеризовать это особое состояние, немецкий физик В. Гейзенберг ввел понятие о принципе неопределенности, т.е. показал, что невозможно определить одновременно и точно энергию и местоположение электрона. Чем точнее определена энергия электрона, тем неопределеннее его положение, и наоборот, определив положение, нельзя определить энергию электрона. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность нахождения электрона максимальна.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

В нем заключено приблизительно $90%$ электронного облака, и это означает, что около $90%$ времени электрон находится в этой части пространства. По форме различают $4$ известных ныне типа орбиталей, которые обозначаются латинскими буквами $s, p, d$ и $f$. Графическое изображение некоторых форм электронных орбиталей представлено на рисунке.

Важнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром. Электроны, обладающие близкими значениями энергии, образуют единый электронный слой, или энергетический уровень. Энергетические уровни нумеруют, начиная от ядра: $1, 2, 3, 4, 5, 6$ и $7$.

Целое число $n$, обозначающее номер энергетического уровня, называют главным квантовым числом.

Оно характеризует энергию электронов, занимающих данный энергетический уровень. Наименьшей энергией обладают электроны первого энергетического уровня, наиболее близкого к ядру. По сравнению с электронами первого уровня электроны последующих уровней характеризуются большим запасом энергии. Следовательно, наименее прочно связаны с ядром атома электроны внеш него уровня.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе Д. И. Менделеева, к которому принадлежит химический элемент: у атомов элементов первого периода один энергетический уровень; второго периода — два; седьмого периода — семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле:

где $N$ — максимальное число электронов; $n$ — номер уровня, или главное квантовое число. Следовательно: на первом, ближайшем к ядру энергетическом уровне может находиться не более двух электронов; на втором – не более $8$; на третьем – не более $18$; на четвертом – не более $32$. А как, в свою очередь, устроены энергетические уровни (электронные слои)?

Начиная со второго энергетического уровня $(n = 2)$, каждый из уровней подразделяется на подуровни (подслои), несколько отличающиеся друг от друга энергией связи с ядром.

Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один под уровень; второй — два; третий — три; четвертый — четыре. Подуровни, в свою очередь, образованы орбиталями.

Каждому значению $n$ соответствует число орбиталей, равное $n^2$. По данным, представленным в таблице, можно проследить связь главного квантового числа $n$ с числом подуровней, типом и числом орбиталей и максимальным числом электронов на подуровне и уровне.

Главное квантовое число, типы и число орбиталей, максимальное число электронов на подуровнях и уровнях.

Подуровни принято обозначать латинскими буквами, равно как и форму орбиталей, из которых они состоят: $s, p, d, f$. Так:

Ядро атома

Но не только электроны входят в состав атомов. Физик Анри Беккерель обнаружил, что природный минерал, содержащий соль урана, тоже испускает неведомое излучение, засвечивая фотопленки, закрытые от света. Это явление было названо радиоактивностью.

Различают три вида радиоактивных лучей:

Следовательно, атом имеет сложное строение — состоит из положительно заряженного ядра и электронов.

Как же устроен атом?

В 1910 г. в Кембридже, близ Лондона, Эрнест Резерфорд со своими учениками и коллегами изучал рассеяние $α$-частиц, проходящих через тоненькую золотую фольгу и падаюших на экран. Альфа-частицы обычно отклонялись от первоначального направления всего на один градус, подтверждая, казалось бы, равномерность и однородность свойств атомов золота. И вдруг исследователи заметили, что некоторые $α$-частицы резко меняли направление своего пути, будто наталкиваясь на какую-то преграду.

Разместив экран перед фольгой, Резерфорд сумел обнаружить даже те редчайшие случаи, когда $α$-частицы, отразившись от атомов золота, летели в противоположном направлении.

Расчеты показали, что наблюдаемые явления могли произойти, если бы вся масса атома и весь его положительный заряд были сосредоточены в крохотном центральном ядре. Радиус ядра, как выяснилось, в 100 000 раз меньше радиуса всего атома, той его области, в которой находятся электроны, имеющие отрицательный заряд. Если применить образное сравнение, то весь объем атома можно уподобить стадиону в Лужниках, а ядро — футбольному мячу, расположенному в центре поля.

Атом любого химического элемента сравним с крохотной Солнечной системой. Поэтому такую модель атома, предложенную Резерфордом, называют планетарной.

Протоны и нейтроны

Оказывается, и крошечное атомное ядро, в котором сосредоточена вся масса атома, состоит из частиц двух видов — протонов и нейтронов.

Протоны и нейтроны вместе называют нуклонами (от лат. nucleus — ядро).

Сумма числа протонов и нейтронов в атоме называется массовым числом. Например, массовое число атома алюминия:


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Поскольку атом электронейтрален, также очевидно, что число протонов и электронов в атоме одинаково. Оно равно порядковому номеру химического элемента, присвоенному ему в Периодической системе. Например, в ядре атома железа содержится $26$ протонов, а вокруг ядра вращается $26$ электронов. А как определить число ней тронов?

Как известно, масса атома складывается из массы протонов и нейтронов. Зная порядковый номер элемента $(Z)$, т.е. число протонов, и массовое число $(А)$, равное сумме чисел протонов и нейтронов, можно найти число нейтронов $(N)$ по формуле:

Например, число нейтронов в атоме железа равно:

$56 – 26 = 30$.

В таблице представлены основные характеристики элементарных частиц.

Изотопы

Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядра, но разное массовое число, называются изотопами.

Слово изотоп состоит из двух греческих слов: isos — одинаковый и topos — место, обозначает «занимающий одно место» (клетку) в Периодической системе элементов.

Химические элементы, встречающиеся в природе, являются смесью изотопов. Так, углерод имеет три изотопа с массой $12, 13, 14$; кислород — три изотопа с массой $16, 17, 18$ и т. д.

Обычно приводимая в Периодической системе относительная атомная масса химического элемента является средним значением атомных масс природной смеси изотопов данного элемента с учетом их относительного содержания в природе, поэтому значения атомных масс довольно часто являются дробными. Например, атомы природного хлора представляют собой смесь двух изотопов — $35$ (их в природе $75%$) и $37$ (их $25%$); следовательно, относительная атомная масса хлора равна $35.5$. Изотопы хлора записываются так:

Химические свойства изотопов хлора совершенно одинаковы, как и изотопов большинства химических элементов, например калия, аргона:


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Теперь можно дать современное, более строгое и научное определение химическому элементу.

Химический элемент — это совокупность атомов с одинаковым зарядом ядра.

Строение электронных оболочек атомов элементов первых четырех периодов

Рассмотрим отображение электронных конфигураций атомов элементов по периодам системы Д. И. Менделеева.

Элементы первого периода.


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Электронные формулы атомов показывают распределение электронов по энергетическим уровням и под уровням.

Графические электронные формулы атомов показывают распределение электронов не только по уровням и под уровням, но и по орбиталям.


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

В атоме гелия первый электронный слой завершен — в нем $2$ электрона.

Водород и гелий — $s$-элементы, у этих атомов заполняется электронами $s$-орбиталь.

Элементы второго периода.

У всех элементов второго периода первый электронный слой заполнен, и электроны заполняют $s-$ и $р$-орбитали второго электронного слоя в соответствии с принципом наименьшей энергии (сначала $s$, а затем $р$) и правилами Паули и Хунда.

В атоме неона второй электронный слой завершен — в нем $8$ электронов.

Элементы третьего периода.

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать 3s-, 3р- и 3d-под уровни.

Строение электронных оболочек атомов элементов третьего периода.

У атома магния достраивается $3,5$-электронная орбиталь. $ Na$ и $Mg$ — $s$-элементы.

У алюминия и последующих элементов заполняется электронами $3d$-подуровень.

В атоме аргона на внешнем слое (третьем электронном слое) $8$ электронов. Как внешний слой завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов третьего периода остаются незаполненными $3d$-орбитали.

Все элементы от $Al$ до $Ar$ — $р$-элементы.

$s-$ и $р$-элементы образуют главные подгруппы в Периодической системе.

Элементы четвертого периода.

У атомов калия и кальция появляется четвертый электронный слой, заполняется $4s$-подуровень, т.к. он имеет меньшую энергию, чем $3d$-подуровень. Для упрощения графических электронных формул атомов элементов четвертого периода:

$К, Са$ — $s$-элементы, входящие в главные подгруппы. У атомов от $Sc$ до $Zn$ заполняется электронами 3d-подуровень. Это $3d$-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

В атоме цинка третий электронный слой завершен — в нем заполнены все подуровни $3s, 3р$ и $3d$, всего на них $18$ электронов.

У следующих за цинком элементов продолжает заполняться четвертый электронный слой, $4р$-подуровень. Элементы от $Ga$ до $Кr$ — $р$-элементы.

У атома криптона внешний (четвертый) слой завершен, имеет $8$ электронов. Но всего в четвертом электронном слое, как вы знаете, может быть $32$ электрона; у атома криптона пока остаются незаполненными $4d-$ и $4f$-подуровни.

$4f$-элементы называют лантаноидами.

$5f$-элементы называют актиноидами.

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства, или блока:

Электронная конфигурация атома. Основное и возбужденное состояние атомов

Швейцарский физик В. Паули в $1925$ г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского — веретено), т.е. обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемый оси по часовой стрелке или против. Этот принцип носит название принципа Паули.

Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, т.е. электроны с противоположными спинами.

На рисунке показана схема деления энергетических уровней на подуровни.

Для атома гелия $Не$, имеющего два спаренных электрона на одной $s-$орбитали, эта формула: $1s^2$. Электронная оболочка атома гелия завершена и очень устойчива. Гелий — это благородный газ. На втором энергетическом уровне $(n = 2)$ имеются четыре орбитали, одна $s$ и три $р$. Электроны $s-$орбитали второго уровня ($2s$-орбитали) обладают более высокой энергией, т.к. находятся на большем расстоянии от ядра, чем электроны $1s$-орбитали $(n = 2)$. Вообще для каждого значения $n$ существует одна $s-$орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения $n$.


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

$р-$Орбиталь имеет форму гантели, или объемной восьмерки. Все три $р$-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с $n= 2$, имеет три $р$-орбитали. С увеличением значения $n$ электроны занимают $р$-орбитали, расположенные на больших расстояниях от ядра и направленные по осям $x, y, z$.

У элементов третьего периода заполняются соответственно $3s-$ и $3р$-орбитали. Пять $d$-орбиталей третьего уровня при этом остаются свободными:

Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, т.е. записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул, например:

Очень часто строение электронных оболочек атомов изображают с помощью энергетических, или квантовых ячеек — записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули, согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда, согласно которому электроны занимают свободные ячейки сначала по одному и имеют при этом одинаковое значение спина, и лишь затем спариваются, но спины при этом, по принципу Паули, будут уже противоположно направленными.

Другие органические вещества

Органические соединения очень многочисленны и разнообразны.

К важным классам органических соединений также относятся галогенопроизводные органические вещества R–Hal ,которые содержат также атомы галогенов (хлора, фтора, брома и др.).

В состав органических соединений также могут входить несколько одинаковых или различных функциональных групп.

Типы углеродных атомов в составе органических молекул

Типы углеродных атомов в составе органических молекул


ЭКЗАМЕН ПО ТЕОРЕТИЧЕСКОЙ ХИМИИ

Углерод в органических веществах

Атомы углерода могут соединяться друг с другом с образованием цепей различного строения (разветвленные, неразветвленные, замкнутые) и длины (от двух до сотен тысяч атомов углерода).

В органических веществах углерод имеет валентность IV (образует 4 связи).

CH3-CH3               CH2=CH2               CH≡CH

В основе современной органической химии лежит теория строения органических соединений.

Типы связей в молекулах органических веществ

Одна из характеристик химических связей — тип перекрывания орбиталей атомов в молекуле.
По характеру перекрывания различают σ-(сигма) и π‑(пи) связи.

σ-Связь — это связь, в которой перекрывание орбиталей происходит вдоль оси, соединяющей ядра атомов.

σ-Связь может быть образована любыми типами орбиталей (s, p, d, гибридизованными).

σ-Связь — это основная связь в молекуле, которая преимущественно образуется между атомами.

Между двумя атомами возможна только одна σ-связь.

π-Связь — это связь, в которой перекрывание орбиталей происходит в плоскости, перпендикулярной оси, соединяющей ядра атомов, сверху и снизу от оси связи.

π-Связь образуется при перекрывании только р- (или d) орбиталей, перпендикулярных линии связи и параллельных друг другу.

π-Связь является дополнительной к σ-связи, она менее прочная и легче разрывается при химических реакциях.

Гибридизация атомных орбиталей углерода

Электронная формула атома углерода в основном состоянии:

+6С  1s   2s   2p

В возбужденном состоянии: один электрон переходит с 2s-подуровня на 2р-подуровень.

+6С* 1s2   2s1  2p3

Таким образом, в возбужденном состоянии углерод содержит четыре неспаренных электрона, может образовать четыре химические связи и проявляет валентность IV в соединениях.

При образовании четырех химических связей атомом углерода происходит гибридизация атомных орбиталей.

Гибридизация атомных орбиталей — это выравнивание электронной плотности атомных орбиталей разного типа с образованием новых, молекулярных орбиталей, форма и энергия которых одинаковы.

В гибридизацию вступают атомные орбитали с небольшой разницей в энергии (как правило, орбитали одного энергетического уровня). В зависимости от числа и типа орбиталей, участвующих в гибридизации, для атома углерода возможны sp3, sp2 и sp-гибридизация.

Кодификатор ЕГЭ по химии-2024

1.1.1. Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы.   Электронная конфигурация атомов и ионов. Основное и возбужденное состояния атомов

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

1.2. Периодический закон и Периодическая система химических элементов Д. И. Менделеева

Тренировочные тесты в формате ЕГЭ по теме «Периодический закон» (задание 2 ЕГЭ по химии) ( с ответами)

1.2.1. Закономерности изменения свойств элементов и их соединений по периодам и группам

1.2.2. Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов.

1.2.3. Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в Периодической системе химических элементов Д. И. Менделеева и особенностям строения их атомов

1.2.4. Общая характеристика неметаллов IVА–VIIА групп в связи с их положением в Периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов

1.3. Химическая связь и строение вещества

1.3.1. Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Тренировочные тесты в формате ЕГЭ по теме «Химические связи» (задание 4 ЕГЭ по химии) ( с ответами)

1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов

Тренировочные тесты в формате ЕГЭ по теме «Степень окисления и валентность» (задание 3 ЕГЭ по химии) ( с ответами)

1.3.3. Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения

1.4. Химическая реакция

1.4.1. Классификация химических реакций в неорганической и органической химии

1.4.2. Тепловой эффект химической реакции. Термохимические уравнения

1.4.3. Скорость реакции, ее зависимость от различных факторов

Тренировочные тесты в формате ЕГЭ по теме «Скорость реакции» (задание 20 ЕГЭ по химии) ( с ответами)

1.4.4. Обратимые и необратимые химические реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов

Тренировочные тесты в формате ЕГЭ по теме «Химическое равновесие реакции» (задание 24 ЕГЭ по химии) ( с ответами)

1.4.5. Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты

1.4.6. Реакции ионного обмена

1.4.7. Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Тренировочные тесты в формате ЕГЭ по теме «Гидролиз» (задание 23 ЕГЭ по химии) ( с ответами)

1.4.8. Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее

Тренировочные тесты в формате ЕГЭ по теме «Окислительно-восстановительные реакции» (задание 21 ЕГЭ по химии) ( с ответами)

1.4.9. Электролиз расплавов и растворов (солей, щелочей, кислот)

Тренировочные тесты в формате ЕГЭ по теме «Электролиз» (задание 22 ЕГЭ по химии) ( с ответами)

1.4.10. Ионный (правило В. В. Марковникова) и радикальный механизмы реакций в органической химии

2. Н ЕОРГАНИЧЕСКАЯ ХИМИЯ

2.1. Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная)

Тренировочные тесты в формате ЕГЭ по теме «Классификация неорганических веществ» (задание 5 ЕГЭ по химии) ( с ответами)

2.2. Характерные химические свойства простых веществ – металлов: щелочных, щелочноземельных, магния, алюминия; переходных металлов (меди, цинка, хрома, железа)

2.3. Характерные химические свойства простых веществ – неметаллов: водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния

2.4. Характерные химические свойства оксидов: основных, амфотерных, кислотных

2.5. Характерные химические свойства оснований и амфотерных гидроксидов

2.6. Характерные химические свойства кислот

2.7. Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка)

2.8. Взаимосвязь различных классов неорганических веществ

3. О РГАНИЧЕСКАЯ ХИМИЯ

3.1. Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах

3.2. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа

3.3. Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)

3.4. Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и гомологов бензола, стирола)

3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.

3.6. Характерные химические свойства альдегидов, карбоновых кислот, сложных эфиров

3.7. Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Важнейшие способы получения аминов и аминокислот

3.8. Биологически важные вещества: жиры, белки, углеводы (моносахариды, дисахариды, полисахариды)

3.9. Взаимосвязь органических соединений

4. МЕТОДЫ ПОЗНАНИЯ В ХИМИИ. ХИМИЯ И ЖИЗНЬ

4.1. Экспериментальные основы химии

4.1.1. Правила работы в лаборатории. Лабораторная посуда и оборудование. Правила безопасности при работе с едкими, горючими и токсичными веществами, средствами бытовой химии

4.1.2. Научные методы исследования химических веществ и превращений. Методы разделения смесей и очистки веществ

4.1.3. Определение характера среды водных растворов веществ. Индикаторы

4.1.4. Качественные реакции на неорганические вещества и ионы

4.1.5. Качественные реакции органических соединений

4.1.6. Основные способы получения (в лаборатории) конкретных веществ, относящихся к изученным классам неорганических соединений

4.1.7. Основные способы получения углеводородов (в лаборатории): алканов, алкенов, алкинов, циклоалканов, алкадиенов, аренов

4.1.8. Основные способы получения органических кислородсодержащие соединений (в лаборатории): спиртов, альдегидов и кетонов, карбоновых кислот

4.2.1. Понятие о металлургии: общие способы получения металлов

4.2.2. Общие научные принципы химического производства (на примере промышленного получения аммиака, серной кислоты, метанола). Химическое загрязнение окружающей среды и его последствия

4.2.3. Природные источники углеводородов, их переработка

4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки

4.3. Расчеты по химическим формулам и уравнениям реакций

4.3.1. Расчеты с использованием понятия «массовая доля вещества в растворе»

4.3.2. Расчеты объемных отношений газов при химических реакциях

4.3.3. Расчеты массы вещества или объема газов по известному количеству вещества, массе или объему одного из участвующих в реакции веществ

4.3.4. Расчеты теплового эффекта реакции

4.3.5. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси)

4.3.6. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества

4.3.7. Установление молекулярной и структурной формулы вещества

4.3.8. Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного

4.3.9. Расчеты массовой доли (массы) химического соединения в смеси

Курс подготовки к ЕГЭ или ОГЭ (ГИА) по химии:

Строение атома. Электронные формулы атомов

Строение молекул. Типы химических связей. Основные характеристики ковалентной связи. Межмолекулярные связи

Строение вещества (кристаллические решетки). Основные физические свойства различных кристаллов

Степень окисления и валентность химических элементов.

Основы неорганической химии

Способы получения оксидов

Химические свойства основных оксидов

Химические свойства кислотных оксидов

Химические свойства амфотерных оксидов

Химические свойства и способы получения кислот

Химические свойства и способы получения солей

Химические свойства и способы получения оснований

Взаимосвязь основных классов неорганических веществ

Реакции разложения в неорганической химии

Понятие о растворах,  растворимость

Теория электролитической диссоциации

Электролиз солей.  Электролиз солей карбоновых кислот.

Особенности работы в лаборатории

Химические реакции. Закономерности их протекания

Классификация химических реакций.

Кинетика  (скорость) химических реакций и ее зависимость от разных факторов.

Термодинамика химических реакций: химическое равновесие и его смещение.

Теория строения органических веществ. Классификация органических веществ. Гомологи и изомеры. Виды изомерии.

Алканы: химические и физические свойства, строение, получение, изомерия.

Алкены: химические и физические свойства, строение, получение, изомерия.

Алкины: химические и физические свойства, строение, получение, изомерия.

Алкадиены: химические и физические свойства, строение, получение, изомерия.

Арены: химические и физические свойства, строение, получение, изомерия.

Циклоалканы: химические и физические свойства, строение, получение, изомерия.

Спирты: химические и физические свойства, строение, изомерия и способы получения. Фенолы: химические свойства, способы получения, строение и изомерия.

Альдегиды и кетоны: химические и физические свойства, строение и изомерия, получение.

Карбоновые кислоты: химические и физические свойства, строение, номенклатура и изомерия, способы получения.

Сложные эфиры: химические и физические свойства, строение, получение, изомерия.

Жиры: химические и физические свойства, строение, получение.

Углеводы: химические и физические свойства, строение, получение.

Амины: химические и физические свойства, строение, получение, изомерия.

Аминокислоты: химические и физические свойства, строение, получение, изомерия.

Белки: химические и физические свойства, строение и получение.

Взаимосвязь разных классов органических веществ.

Качественные реакции в органической химии

Характерные реакции в органической химии:

Реакция Дюма   Электролиз солей карбоновых кислот      Пиролиз метана       Реакция Вагнера

Химия щелочных металлов и их соединений.  Пероксиды щелочных металлов. Гидроксиды щелочных металлов.

Химия щелочноземельных металлов. Оксиды щелочноземельных металлов. Гидроксиды щелочноземельных металлов.

Химия алюминия и его соединений. Оксид алюминия. Гидроксид алюминия. Соли алюминия.

Химия углерода. Оксид углерода (II)  и оксид углерода (IV). Угольная кислота и ее соли (карбонаты и гидрокарбонаты).

Химия кремния. Оксид кремния (IV). Кремниевая кислота. Силан. Силикаты.

Химия азота и его соединений. Оксиды азота. Аммиак. Нитриды. Азотная кислота и азотистая кислота. Нитраты.

Химия фосфора и его соединений. Фосфин. Фосфиды металлов. Оксиды фосфора III и V. Фосфорные кислоты и их соли (фосфаты, гидрофосфаты и дигидрофосфаты, пирофосфаты и метафосфаты). Фосфористая кислота.

Химия кислорода и его соединений.

Химия серы и ее соединений. Сероводород и сульфиды. Оксиды серы – сернистый газ и серный ангидрид. Серная кислота и ее свойства. Сернистая кислота. Особенности химии сульфатов и сульфитов.

Химия галогенов и их соединений.

Химия водорода и его соединений.

Задачи: базовый блок

Атомно -молекулярное учение

Способы выражения концентрации в растворах: массовая доля, молярная концентрация.

Расчеты по уравнению реакции

Задачи на избыток-недостаток

Задачи на примеси

Задачи на выход

Задачи повышенной сложности

Задачи на электролиз

Задачи на кристаллогидраты

Задачи на пластинки

Задачи на порции

Задачи на альтернативные реакции (кислые/средние соли, амфотерность)

Задачи на атомистику

Задачи на смеси и сплавы

Задачи на растворимость

Диагностические и тренировочные работы

Все реальные варианты КИМ ЕГЭ по химии

Тренировочная работа по химии в формате ЕГЭ 26 октября 2017 года

Тренировочная работа по химии для 11 классов 30 ноября 2017 года

Досрочный ЕГЭ по химии 25.03.2019

Видеоопыты по общей и неорганической химии

Видеоопыты по органической химии

Классификация органических соединений

Классификацию органических веществ определяют строение углеродной цепи (углеродного скелета) и наличие и особенности строения функциональных групп.

Углеродный скелет – это последовательность соединенных между собой атомов углерода в органической молекуле.

Функциональная группа – это атом или группа атомов, которая определяет принадлежность молекулы к определенному классу органических веществ и химические свойства, соответствующие данному классу веществ.

Гомологи. Гомологический ряд

Органические вещества разных классов тесно взаимосвязаны.

Соединения, содержащие одинаковые функциональные свойства, проявляют схожие химические и физические свойства.

Вещества, которые содержат одинаковые функциональные группы, имеют сходное строение, но отличаются друг от друга на одну или несколько групп –СH2–, образуют гомологический ряд.

Гомологи – это вещества, которые входят в один и тот же гомологический ряд.

Группу  –СH2– называют гомологической разностью.

Формулы строения органических веществ

Состав органического вещества можно описать химическими формулами.

Химические формулы органических веществ бывают следующих типов:

Простейшая формула – может быть получена опытным путем через определение соотношения количества атомов химических элементов в веществе.

Например, простейшая формула метана CH4, а вот бензола – СН.

Истинная формула (брутто-формула) – показывает истинный состав молекулы, но не показывает ее структуру. Истинная формула показывает точное количество атомов каждого элемента в одной молекуле.

Например, истинная формула бензола C6H6.

Полная (развернутая) структурная формула однозначно описывает порядок соединения атомов в молекуле.

Например, полная структурная формула бутана:

Сокращенная структурная формула – это структурная формула, в которой не указываются связи между углеродом и водородом.

Например, сокращенная структурная формула бутана:

Азотсодержащие органические вещества

Азотсодержащие вещества можно также разделить на классы по наличию определенных функциональных групп.

Некоторые органические вещества содержат и азот, и кислород.

К ним относятся:

Кислородсодержащие органические вещества

Так как кислород имеет валентность II, он может образовать либо 2 одинарные связи, либо одну двойную. Соответственно, в органической молекуле он соединяется с водородом и углеродом.